Home
Class 12
MATHS
show that [(1,1,3),(5,2,6),(-2,-1,-3)]=A...

show that `[(1,1,3),(5,2,6),(-2,-1,-3)]=A` is nipotent matrix of order 3.

Text Solution

Verified by Experts

Let `A=[(1,1,3),(5,2,6),(-2,-1,-3)]`
`therefore A^(2)=A.A=[(1,1,3),(5,2,6),(-2,-1,-3)]xx[(1,1,3),(5,2,6),(-2,-1,-3)]`
`[(1+5-6,1+2-3,3+6-9),(5+10-12,5+4-6,15+12-18),(-2-5+6,-2-2+3,-6-6+9)]`
`=[(0,0,0),(3,3,9),(-1,-1,-3)]`
`thereforeA^(3)=A^(2).=[(0,0,0),(3,3,9),(-1,-1,-3)]xx[(1,1,3),(5,2,6),(-2,-1,-3)]`
`[(0+0+0,0+0+0,0+0+0),(3+15-18,3+6-9,9+18-27),(-1-5+16,-1-2+3,-3-6+9)]=[(0,0,0),(0,0,0),(0,0,0)]=0`
`therefore" " A^(3)=Oi.e.,A^(k)=O`
Here `k=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the matrix [{:( 1,1,3),( 5,2,6),( -2,-1,-3):}] is nilpotent matrix of index 3.

A=[[1,1,3],[5,2,6],[-2,-1,-3]] is a nilpotent matrix of index K .Then K=

Show that A=[(1,5,6),(5,2,7),(6,7,3)] is a symmetric matrix as A^T =A .

If A=[[1,1,3],[5,2,6],[-2,-1,-3]] then A is

(i) Show that the matrix A=[(1,-1,5),(-1,2,1),(5,1,3)] is a symmetric matrix. Show that the matrix A=[(0,1,-1),(-1,0,1),(1,-1,0)] is a skew symmetric matrix

If A=[[1,1,3],[5,2,6],[-2,-1,-3]] .Then |A| is

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

If A=([3,23,3]) and B=([1,-(2)/(3)-1,1]) show that AB=I_(2) where I_(2) is the unit matrix of order 2