Home
Class 12
MATHS
the square matrix A=[a(ij)]mxxm given by...

the square matrix `A=[a_(ij)]_mxxm` given by`a_(ij)=(i-j)^(n),` show that A is symmetic and skew-sysmmetic matrices according as n is even or odd, repectively.

Text Solution

Verified by Experts

`therefore " "a_(ij)=(i-j)^(n)=(-1)^(n) (j-i)^(n)`
`=(-1)^(n) a_(ij)={{:(a_(ji)", n is even interger"),(-a_(ji)", n is odd integer"):}`
Hence , A is symmetric if n is even ana skew-symmetric if n is odd integer.
Promotional Banner

Similar Questions

Explore conceptually related problems

The square matrix A=[a_(ij)" given by "a_(ij)=(i-j)^3 , is a

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

"In a square matrix "A=a_(ij)" if i>j then "a_(ij)=0" then the Matrix A is"

The element a_(ij) of square matrix is given by a_(ij)=(i+j)(i-j) then matrix A must be

If A=[a_(ij)] is a square matrix such that a_(ij)=i^(2)-j^(2), then write whether A is symmetric or skew-symmetric.