Home
Class 12
MATHS
Matrices A and B Satisfy AB = B^(-1), ...

Matrices A and B Satisfy `AB = B^(-1)`, where B `=[{:(2,-2),(-1,0):}]`, find the value of `lambda` for which `lambdaA - 2B^(-1) + 1=O`, Without finding `B^(-1)`.

Text Solution

Verified by Experts

` because " " AB =B^(-1) or AB^(2) = I`
Now, `lambdaA-2B^(-1)+I=0`
`rArr" " lambdaAB-2B^(-1)B+IB=O`
`rArr" "lambdaAb-2I + B =O`
` rArr" "lambdaAB^(2) -2IB + B^(2) = O`
`rArr" "lambdaAB^(2) -2b + B^(2) =O`
`rArr " " lambdaI - 2B + B^(2) =O " " [because AB^(2) =I]`
`rArr lambda[{:(2,-2),(0,1):}]-2[{:(2,-2),(-1,0):}]+[{:(2,-2),(-1,0):}][{:(2,-2),(-1,0):}]=[{:(0,0),(0,0):}]`
`rArr " "[{:(lambda,0),(0,lambda):}]-[{:(4,-4),(-2,0):}]+[{:(6,-4),(-2,2):}]=[{:(0,0),(0,0):}]`
`rArr2 [{:(lambda+2,0),(0,lambda+2):}]=[{:(0,0),(0,0):}] rArr " " lamda+2=0`
`therefore " " lamda=-2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Matrices a and B satisfy AB=B^(-1) , where B=[(2,-1),(2,0)] . Find (i) without finding B^(-1) , the value of K for which KA-2B^(-1)+I=O . (ii) without finding A^(-1) , the matrix X satifying A^(-1) XA=B .

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .

If sin (A+B) = 1 and sin (A-B) = 1/2 where AB epsilon[0,(pi)/(2)] . What is the value of B?

Find matrices A and B, if 2A - B =[{:(6,-6,0),(-4,2,1):}] and A-2B =[{:(3,2,8),(-2,1,7):}]

If A'=[[-2,3],[1,2]] and B=[[-1,0],[1,2]] then find the value of (A+2B)'

If A=[[-2,3],[1,2]] and B=[[-1,0],[1,2]] then find the value of (A+2B)

If a=sqrt(2)+1 and b=(1)/(a), find the value of a^(2)-b^(2)

if a=sqrt(2)+1 and b=(1)/(a), find the value of a^(2)-b^(2)

If tan A=(a)/(a+1) and tan B=(1)/(2a+1) then find the value of A+B