Home
Class 12
MATHS
If A = [(3,1),(2,1)] find the value of |...

If `A = [(3,1),(2,1)]` find the value of `|a|+|b|` such that `A^(2)+aA+bl=O.` Hece,find `A^(-1)`

Text Solution

Verified by Experts

we have, `A=[(3,1),(2,0)]` then `|A|=|(3,1),(2,1)|=3-2=1!=0`
`therefore" " A^(-1)`. Exists.
Now `A^(2)=A.A=[(3,1),(2,1)][(3,1),(2,1)]=[(11,4),(8,3)]`
`rArr" " [(11,4),(8,3)]+a[(3,1),(2,1)]+b[(1,0),(0,1)]=[(0,0),(0,0)]`
`rArr" " [(11+3a+b,4+a),(8+2a,3+a+b)]+[(0,0),(0,0)]`
Equating the corresponding elements, we get
`11a+3a+b=0`
`4+a=0`
` 3+a+b=0`
from Eqs. (ii) and (iv), we get `a=-4` and `b=1`
`therefore" " |a|+|b|=|-4|+|1|=4+1=5`
As`" " A^(2)+aA+bI=O`
` rArr " " A^(2)-4A+I+O rArr I=4A-A^(2)`
`rArr " " IA^(-1) = 4(A A^(-1))-A(A A^(-1))`
`=4I-AI=4I-A`
`= 4[(1,0),(0,1)]-[(3,1),(2,1)]=[(4,0),(0,4)]-[(3,1),(2,1)]`
`therefore " " A(-1)=[(1,-1),(-2,3)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such that A^(2)+aA+bI=O . Hence , find A^(-1) .

For the matrix A=[3211], find the numbers a and b such that A^(2)+aA+bI=O. Hence find A^(-1) .

If a + 1/a = 2 , find the value of a^3 + 1/a^3

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

For the matrix A=[[3,21,1]], find the numbers a and b such that A^(2)+aA+bI=O

If a = 3 , b = 2 , find the value of ( a^a + b^b )^-1

For the matrix A=[[3,21,1]], find the numbers a and b such that A^(2)+aA+bI=0

If a + 1/a = 3 , find the value of ( a - 1/a )^2

3.If a+b=6 then find the value of 1/2a+1/2b

Find the value of ( 1^3 + 2^3 + 3^3 ) ^(-1/2)