Home
Class 12
MATHS
show that the characterstic roots of an ...

show that the characterstic roots of an idempotent matrix are either zero or unity.

Text Solution

Verified by Experts

Let A be an idempotent matrix, then
`A^(2)=A`
If `lambda` be an eigen value of the matrix A correspondin to eigen vector X,so that
`AX=lambdaX`
where `X!=0`
from Eq. (ii) , `A(AX)=A(lambdaX)`
`rArr (A A)X=lambda(AX)`
` rArr A^(2)x=lambda (lambdaX)`
`rArr AX = lambda^(2)X`
`rArr lambdaX=lambda^(2)X`
`rArr (lambda-lambda^(2))X=0`
`rArr lambda-lambda^(2)=0`
`therefore lambda=0`
or lambda=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the characteristics roots of an idempotent matris are either 0 or 1

nth roots of Unity

nth roots of Unity

nth roots of Unity

nth Roots of Unity

Nth roots OF unity

Nth root OF unity

If Z is an idempotent matrix, then (I+Z)^(n)

If B is an idempotent matrix, and A=I-B , then