Home
Class 12
MATHS
let A={a(ij)}(3xx3) such that a(ij)={3 ,...

let `A={a_(ij)}_(3xx3)` such that `a_(ij)={3 , i=j and 0,i!=j`. then `{det(adj(adjA))/5}` equals: (where {.} represents fractional part)

A

`(1)/(7)`

B

`(2)/(7)`

C

`(3)/(7)`

D

`(4)/(7)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(4xx4) such that a_(ij)={(2; if i=j),(0; if i!=j)) then {det(adj(adjA))/7} is (where {.} represent fractional portion) (A) 1/7 (B) 2/7 (C) 3/7 (D) none of these

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

if A=[a_(ij)]_(3xx3) such that a_(ij)=2 , i=j and a_(ij)=0 , i!=j then 1+log_(1/2) (|A|^(|adjA|))

If A=[a_("ij")]_(4xx4) , such that a_("ij")={(2",","when "i=j),(0",","when "i ne j):} , then {("det (adj (adj A))")/(7)} is (where {*} represents fractional part function)

Let A=[a_(ij)]_(3xx3) be such that a_(ij)=[{:(3, " when",hati=hatj),(0,,hati ne hatj):}" then " {("det (adj(adj A))")/(5)} equals : ( where {.} denotes fractional part function )

Suppose A=(a_(ij))_(3xx3) where a_(ij) epsilon R If det (adj(A)A^(-1))=3 , then det (adj(A)) equals:

If A=[a_(ij)]_(3xx3) is a scalar matrix such that a_(ij)=5" for all "i=j," then: "|A|=

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….