Home
Class 12
MATHS
If A=[(1,2),(2,1)] and f(x)=(1+x)/(1-x),...

If `A=[(1,2),(2,1)]` and `f(x)=(1+x)/(1-x)`, then f(A) is

A

`[[1 ,1],[1,1]]`

B

`[[2 ,2],[2,2]]`

C

`[[-1 ,-1],[-1,-1]]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`because f(x) = (1+x)/(1-x)`
`rArr (1-x) f(x) = 1 +x`
`rArr (I-A)f(A) = (I+A)`
` rArr f(A) = (I-A)^(-1) (I+A)`
`([[1,0],[0,1]]-[[1,2],[2,1]])^(-1)([[1,0],[0,1]]+[[1,2],[2,1]])`
`[[0,-2],[-2,0]]^(-1)[[2,2],[2,2]]=-1/4[[0,2],[2,0]][[2,2],[2,2]]`
`=-1/4 [[4,4],[4,4]]=[[-1,-1],[-1,-1]]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) then f(2x) is equal to

f(x)+f(1-x)=2, then f((1)/(2)) is

If f'(x)=x-(1)/(x^(2)) and f(1)=(1)/(2), find f(x)

If f(x)=x for 0<=x<(1)/(2),f(x)=1f or x=(1)/(2) and f(x)=1- for (1)/(2)<<1 then at x=(1)/(2) the function is

For x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions. If a function, J(x) satisfies (f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x) is equal to

If f (x)=4x -x ^(2), then f (a+1) -f (a-1) =

If f(x)=log((1+x)/(1-x)), then f(x) is (i) Even Function (ii) f(x_(1))-f(x_(2))=f(x_(1)+x_(2)) (iii) ((f(x_(1)))/(f(x_(2))))=f(x_(1)-x_(2)) (iv) Odd function

If f(x)=x^2+2x+1 , then: f(x-1)-=

If 2f (x +1) +f ((1)/( x +1))=2x, then f(2) is equal to

If f(2x + 1 ) = x + 1 , then f(x^2) =