Home
Class 12
MATHS
For a matrix A=[[1,2r-1] , [0,1]] then p...

For a matrix `A=[[1,2r-1] , [0,1]]` then `prod_(r=1)^(60) [[1,2r-1] , [0,1]]=`

A

` [[1, 100],[0,1]]`

B

` [[1, 4950],[0,1]]`

C

` [[1, 5050],[0,1]]`

D

` [[1, 2500],[0,1]]`

Text Solution

Verified by Experts

The correct Answer is:
D

`prod_(r=1) ^(50) [[1, 2r-1],[0,1]]= [[1, 1+3+5+...+99],[0,1]]`
`=[[1 ,(50)^(2)],[0,1]]=[[1,2500],[0,1]]`
Promotional Banner

Similar Questions

Explore conceptually related problems

For a matrix A=[[1,2r-10,1]] then prod_(r=1)^(60)[[1,2r-10,1]]

for a matrix A = the [[1,2r-10,1]] the value of pi_ (r-1) ^ (50) the [[1,2r-10,1]]

If prod_(r=1)^(n)[[1,r],[0,1]]=[[1,120],[0,1]] then n = ?

If f(n)=prod_(r=1)^(n)cos r,n in N , then

If M is the matrix [(1,-3),(-1,1)] then find matrix sum_(r=0)^(oo) ((-1)/3)^(r) M^(r+1)

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

If A=[[1, 0], [-1, 3]] , then R_1 harr R_2 on A gives

A=[[1,0-1,3]],R_(1)harr R_(2)

The value of prod_(r=1)^(7)cos\ (pi r)/(15) is

Probability if n heads in 2n tosses of a fair coin can be given by prod_(r=1)^n((2r-1)/(2r)) b. prod_(r=1)^n((n+r)/(2r)) c. sum_(r=0)^n((^n C_r)/(2^n)) d. (sumr=0n(^n C_r)^2)/(sumr=0 2n(^(2n)C_r)^)