Home
Class 12
MATHS
If A= [a(ij)] (nxxn) and f is a functi...

If `A= [a_(ij)] _(nxxn)` and f is a function, we define `f (A) = [f(a_(ij))] _(nxxn)."Let"A = [[pi/2-theta,theta],[-theta,pi/2-theta]]` then

A

sin A is invertible

B

sin A = cos A

C

sin A is orthogonal

D

sin 2 A=2 sin A cos A

Text Solution

Verified by Experts

The correct Answer is:
A, C

`sin A = [[cos theta ,sin theta],[-sin theta , cos theta]] and cos theta = [[sin theta , cos theta ],[cos theta , sin theta ]]`
`therefore abs(sin A) cos^(2) theta + sin ^(2) theta = 1 ne 0 `
Hence, sin A is incertible.
Also, `(sinA)(sin A)^(T) = [[cos theta ,sin theta],[-sin theta , cos theta]][[cos theta ,-sin theta],[sin theta , cos theta]]`
` = [[1,0],[0,1]] = I`
Hence, sin A is orthogonal.
Also ,`2sinA" " sin A = 2[[cos theta ,sin theta],[-sin theta , cos theta]][[sin theta,cos theta ],[ cos theta,sin theta]]`
`= 2 [[sin 2theta, 1 ],[cos 2 theta, 0]] ne sin 2 A`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=((a_(i j)))_(nxxn) and f is a function, we define f(A)=((f(a_(i j))))_(nxxn ') Let A=(pi//2-thetatheta-thetapi//2-theta) . Then sinA is invertible b. sinA=cos A c. sinA is orthogonal d. sin(2A)=2AsinA cos A

Let f(theta)=sin theta(sin theta+sin3 theta)* then

Let A=[a_(ij)]_(nxxn) n is odd. Then det ((A-A^(T))^(2009)) is equal to

Let f(theta)=sintheta(sintheta+sin3theta).Then, f(theta)

If min and max value of the function f:[pi/4,pi/2] to R, f(theta)=|[-sin^2theta,-1-sin^2theta,1],[-cos^2theta,-1-sin^2theta,1],[12,-4,0]| are m and M . Find the ordered pair (m,M) .

Let f(theta)=sin theta(sin theta +sin 3 theta). " Then " f(theta)

The range of the function f (theta) =(sin theta)/( theta ) + (theta)/(tan theta) , theta in (0, (pi)/(2)) is equal to :

If theta in((pi)/(4),(pi)/(2)) and f(theta)=sec 2theta- tan 2theta , then f((pi)/(4)-theta)=

Let f(x) be an integrable function defined on [a,b], b gt a gt 0 . If I_(1)=int_(pi//6)^(pi//3) f(tan theta+cos theta)sec^(2) theta d theta and, I_(2)=int_(pi//6)^(pi//3) f(tan theta +cot theta)cosec^(2) theta d theta , then (I_(1))/(I_(2))=