Home
Class 12
MATHS
Let A = [[1,0,0],[1,0,1], [0,1,0]] " sat...

Let `A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I` for `nge 3` and
consider matrix `underset(3xx3)(U)` with its columns as `U_(1), U_(2), U_(3),` such that
`A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]]`
Trace of `A^(50)` equals

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the trace of the matrix \( A^{50} \) given the recurrence relation and the properties of the matrix \( A \). ### Step-by-step Solution: 1. **Understand the Recurrence Relation**: We are given that: \[ A^n = A^{n-2} + A^2 - I \quad \text{for } n \geq 3 \] This means we can express \( A^{50} \) in terms of previous powers of \( A \). 2. **Express \( A^{50} \)**: Using the recurrence relation, we can express \( A^{50} \) as: \[ A^{50} = A^{48} + A^2 - I \] Continuing this process, we can express \( A^{48} \) in terms of \( A^{46} \): \[ A^{48} = A^{46} + A^2 - I \] Repeating this, we eventually express \( A^{50} \) in terms of \( A^2 \) and the identity matrix \( I \). 3. **Calculate the Pattern**: Continuing this pattern down to \( A^2 \): \[ A^{50} = A^2 + A^2 + A^2 + ... - 24I \] Since we have \( 25 \) terms of \( A^2 \) (from \( A^2 \) to \( A^{50} \)), we can simplify this to: \[ A^{50} = 25A^2 - 24I \] 4. **Calculate \( A^2 \)**: Now we need to find \( A^2 \): \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \] To calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \] Performing the multiplication: \[ A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \] 5. **Substituting \( A^2 \) into \( A^{50} \)**: Now substituting \( A^2 \) back into the equation for \( A^{50} \): \[ A^{50} = 25 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} - 24I \] Where \( I \) is the identity matrix: \[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] Thus: \[ A^{50} = \begin{bmatrix} 25 & 0 & 0 \\ 25 & 0 & 25 \\ 0 & 25 & 0 \end{bmatrix} - \begin{bmatrix} 24 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 25 & -24 & 25 \\ 0 & 25 & -24 \end{bmatrix} \] 6. **Finding the Trace of \( A^{50} \)**: The trace of a matrix is the sum of its diagonal elements: \[ \text{Trace}(A^{50}) = 1 + (-24) + (-24) = 1 - 24 - 24 = 1 - 48 = -47 \] ### Final Answer: The trace of \( A^{50} \) is \( -47 \).

To solve the problem, we need to find the trace of the matrix \( A^{50} \) given the recurrence relation and the properties of the matrix \( A \). ### Step-by-step Solution: 1. **Understand the Recurrence Relation**: We are given that: \[ A^n = A^{n-2} + A^2 - I \quad \text{for } n \geq 3 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] The value of abs(A^(50)) equals

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] The value of abs(U) equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The value of |uu| equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The values of |A^(50| equals

If U_(n)=2cos n theta, then U_(1)U_(n)-U_(n-1) is equal to -

Let A=[[1,0,0],[2,1,0],[3,2,1]] and U_(1),U_(2),U_(3) be column matrices satisfying , AU_(1)=[[1],[0],[0]],AU_(2)=[[2],[3],[6]] .AU_(3)=[[2],[3],[1]] , is 3times3 matrix whose columns are , U_(1),U_(2),U_(3) , then |U|=,(A) 3, (B) -3, (C) 3/2 , (D) 2

Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3 be column matrices satisfying {:AU_1[(1),(0),(0)],AU_2[(2),(3),(6)],AU_3[(2),(3),(1)]:} .If U is 3xx3 matrix whose columns are U_1,U_2,U_3," then "absU=

If A=[(1,0),(1/2,1)] then A^50 is (A) [(1,25),(0,1)] (B) [(1,0),(25,1)] (C) [(1,0),(0,50)] (D) [(1,0),(50,1)]

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is