Home
Class 12
MATHS
Let A = [[1,0,0],[1,0,1], [0,1,0]] " sat...

Let `A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I` for `nge 3` and
consider matrix `underset(3xx3)(U)` with its columns as `U_(1), U_(2), U_(3),` such that
` A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]]`
The value of `abs(U)` equals

A

-1

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

`because A^(n) = A^(n-2) + A^(2) - I rArr A^(50) = A^(48) + A^(2) - I`
Further, `{:(A^(48) =, A^(46) +, A^(2) ,- I) , (A^(46) =, A^(44) +, A^(2), -I),(vdots ,vdots,vdots, vdots),(A^(4)=,A^(2) +, A^(2),-I^(4)):} `
On adding all, we get
`A^(50) = 25 A^(2) - 24I` ...(i)
Let `U_(1)=[[x],[y],[x]]`
Given, `A^(50) U_(1) = [[1],[25],[25]]rArr [[1,0,0],[25,1,0],[25,0,1]][[x],[y],[z]]= [[1],[25],[25]]`
[from Eq. (ii) ]
`rArr [[x],[25x+y],[25x+z]]=[[1],[25],[25]]`, we get x = 1, y = 20 and z = 0
`therefore U_(1) = [[1],[0],[0]], "similarly " U_(2) = [[0],[1],[0]]`
and `U_(3) = [[0],[0],[1]]rArrU = [[1,0,0],[0,1,0],[0,0,1]]=I`
`therefore abs(U)=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] The value of abs(A^(50)) equals

Let A = [[1,0,0],[1,0,1], [0,1,0]] " satisfies " A^(n) = A^(n-2) + A^(2 ) -I for nge 3 and consider matrix underset(3xx3)(U) with its columns as U_(1), U_(2), U_(3), such that A^(50)U_(1)=[[1],[25],[25]],A^(50) U_(2)=[[0],[1],[0]]and A^(50) U_(3)[[0],[0],[1]] Trace of A^(50) equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The values of |A^(50| equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The value of |uu| equals

If U_(n)=2cos n theta, then U_(1)U_(n)-U_(n-1) is equal to -

Let A=[[1,0,0],[2,1,0],[3,2,1]] and U_(1),U_(2),U_(3) be column matrices satisfying , AU_(1)=[[1],[0],[0]],AU_(2)=[[2],[3],[6]] .AU_(3)=[[2],[3],[1]] , is 3times3 matrix whose columns are , U_(1),U_(2),U_(3) , then |U|=,(A) 3, (B) -3, (C) 3/2 , (D) 2

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3 be column matrices satisfying {:AU_1[(1),(0),(0)],AU_2[(2),(3),(6)],AU_3[(2),(3),(1)]:} .If U is 3xx3 matrix whose columns are U_1,U_2,U_3," then "absU=

If u_(0) = 8 , u_(1) = 3 , u_(2) = 12 , u_(3) = 51 , then the value of Delta^(3) u_(0) is