Home
Class 12
MATHS
If A^(n) = 0, then evaluate (i) I+A+A^(...

If `A^(n) = 0`, then evaluate
(i) `I+A+A^(2)+A^(3)+…+A^(n-1)`
(ii)`I-A + A^(2) - A^(3) +... + (-1) ^(n-1)` for odd 'n' where I is the identity matrix having the same
order of A.

Text Solution

Verified by Experts

(i) `A^(n) = 0 rArr A^(n) - I = -I`
`rArr A^(n) - I ^(n) = -I rArr I^(n) -A^(n) =I`
`rArr (I-A) (I + A+A^(2)+A^(3)+... + A^(n-1) ) = I`
`rArr (I+A+A^(2) +A^(3) +... + A^(n-1) )`
`= (I-A)^(-1) I = (I-A) ^(-1)`
(ii) `A^(n) = 0 rArr A^(n) + I = I`
`rArr A^(n) + I^(n) = I`
`rArr I^(n) + A^(n) = I`
`rArr (I+A) (I-A+A^(2) - A^(3) +...+ A^(n-1) )=I`
[`because` n is odd]
`rArr I-A+A^(2) - A^(3) +...+ A^(n-1) `
`=(I+A)^(-1) I = (I+A)^(-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A is idempotent matrix, then show that (A+I)^(n) = I+(2^(n)-1) A, AAn in N, where I is the identity matrix having the same order of A.

If I_(n) is the identity matrix of order n then (I_(n))^(-1)=

Evaluate. (i) i^(1998) (ii) i^(-9999) (iii) (-sqrt-1)^(4n=3) ,n ne N

Let A=[[0,10,0]] show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is the identity matrix of order 2 and n in N

If n in N, then find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

If A^(5) is null square matrix and A^(3)!=0 and (I-A) is the inverse of matrix I+A+A^(2)+.........+A^(n) , then possible value of n can be ( I is the identity matrix of same order as that of A )

Find the value of ( i^2 + n ) ( i^2 + n - 1 ) ( i^2 + n - 2 ) .......( i^2 + 1 )