Home
Class 12
MATHS
Prove that the inverse of [[A,O],[B,C]] ...

Prove that the inverse of `[[A,O],[B,C]]` is
`[[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]` , where A, Care non-singular matrices and
O is null matrix and find the inverse. `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]]`

Text Solution

Verified by Experts

We have, First part `[[A,O],[B,C]][[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]`
`=[[A A^(-1),O],[BA^(-1)-C C ^(-1)BA^(-1),C C^(-1)]]`
`=[[I,O],[BA^(-1)-BA^(-1),I]]=[[I,O],[0,I]]`
Hence, `[[A^(-1),O],[-C^(-1)BA^(-1),C^(-1)]]` is the inverse of `[[A,O],[B,C]] `
Second part `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]] = [[A,O],[B,C]]`
where `A = [[1,0],[1,1]], B=[[1,1],[1,1]],C=[[1,0],[1,1]]and O = [[0,0],[0,0]]`
and `A^(-) = [[1,0],[-1,1]],C^(-1)=[[1,0],[-1,1]]`
Now, `C^(-1)BA^(-1) = [[1,0],[-1,1]][[1,1],[1,1]][[1,0],[-1,1]] = [[0,0],[0,0]]`
`therefore` Inverse of `[[1,0,0,0],[1,1,0,0],[1,1,1,0],[1,1,1,1]] "is" [[1,0,0,0],[-1,1,0,0],[0,1,1,0],[0,0,-1,1]]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of [[1,-1],[0,-3]]

The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

If B and C are non-singular matrices and O is null matrix,then show that [[A,BC,O]]^(-1)=[[O,C^(-1)B^(-1),-B^(1)AC^(-1)]]

Find the inverse of the matrix [[0,1,21,2,33,1,1]]

The inverse of matrix A=[[0,1,01,0,00,0,1]] is

" The inverse of the matrix "([1,0,0],[a,1,0],[b,c,1])" is "

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

The inverse of [(1,a,b),(0,x,0),(0,0,1)] is [(1,-a,-b),(0,1,0),(0,0,1)] |then x =