Home
Class 12
MATHS
If there are three square matrix A, B, C...

If there are three square matrix A, B, C of same order satisfying the equation `A^2=A^-1 and B=A^(2^n) and C=A^(2^((n-2))`, then prove that `det .(B-C) = 0, n in N`.

Text Solution

Verified by Experts

`because B = ^(2^(n)) = A^(2.2^(n-1)) = (A^(2))^(2^(n-1)) = (A^(-1)) ^(2^(n-1) ) [ because A^(2) = A^(-1)]`
`= (A^(2^(n-1)))^(-1) = (A^(2.2^(n-2)))^(-1) = [(A^(2))^(2^(n-2))]^(-1)`
`= [(A^(-1))^(2^(n-2))]^(-1)= ((A^(-1))^(-1))^(2^(n-2)) = A^(2^(n-2))=C`
`rArr B-C=0 rArr det (B-C) = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If there are three square matrix A,B,C of same order satisfying the equation A^(2)=A^(-1) and B=A^(2) and C=A^((n-2)) then prove that det.(B-C)=0,n in N

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

If matrix a satisfies the equation A^(2)=A^(-1) , then prove that A^(2^(n))=A^(2^((n-1))), n in N .

If A ,B,C are three non-singular matrices of same order and |A| is a function of x and A^(2)=A^(-1),B=A^(2^(n)),C=A^(2^(n-2)) , n in N .If f'(x)=det(B-C) and f(7)=5 ,then the value of f(5) is

Let A;B;C be square matrices of the same order n. If A is a non singular matrix; then AB=AC then B=C

If A and B are square matrices of the same order such that A B" "=" "B A , then prove by induction that A B^n=B^n A . Further, prove that (A B)^n=A^n B^n for all n in N .

A and B are different matrices of order n satisfying A^(3)=B^(3) and A^(2)B=B^(2)A . If det. (A-B) ne 0 , then find the value of det. (A^(2)+B^(2)) .

If A,B and C are square matrices of order n and det (A)=2, det(B)=3 and det ©=5, then find the value of 10det (A^(3)B^(2)C^(-1)).

If a+b+c=0, an^(2)+bn+c=0 and a+bn+cn^(2)=0 where n!=0, 1 , then prove that a=b=c=0

If B,C are n rowed square matrices and if A=B+C,BC=CB,C^(2)=O, then show that for every n in N,A^(n+1)=B^(n)(B+(n+1)C)