Home
Class 12
MATHS
Let f(x)=f(1)(x)-2f(2)(x), where f(1)(x...

Let `f(x)=f_(1)(x)-2f_(2)(x),` where `f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):}` `"and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):}` `"and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):}` The graph of `y=g(x)` in its domain is broken at

A

1 point

B

2 points

C

3 points

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|24 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} For x in(-1,00),f(x)+g(x) is

Let f(x)=f_1(x)-2f_2 (x), where ,where f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1)) and f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1)) and let g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3})) for -3 le x le -1 the range of g(x) is

f(x)=min({x,x^(2)} and g(x)=max{x,x^(2)}

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

Let f(x)=max.{|x^(^^)2-2|x||,|x|} and g(x)=min.{|x^(^^)2-2|x||,|x|} then

Let f(x)={:{(max{t^(3)-t^(2)+t+1,0letlex}",",0lexle1),(min{3-t,1lttlex}",",1ltxle2):} The function f(x),AAx in [0,2] is

f(x)={(2+2x,-3lexle0),(1-x/(2),0 lt x le1)) g(x)={(-x,-1lexlt0),(x, 0lexle1)) Range of fog(x) is