Home
Class 12
MATHS
Solve |sqrt(3) cos x - sin x |ge 2 for ...

Solve ` |sqrt(3) cos x - sin x |ge 2` for ` x in [0,4pi]` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |\sqrt{3} \cos x - \sin x| \geq 2 \) for \( x \in [0, 4\pi] \), we will follow these steps: ### Step 1: Rewrite the inequality We start with the inequality: \[ |\sqrt{3} \cos x - \sin x| \geq 2 \] This can be split into two separate inequalities: \[ \sqrt{3} \cos x - \sin x \geq 2 \quad \text{or} \quad \sqrt{3} \cos x - \sin x \leq -2 \] ### Step 2: Solve the first inequality For the first inequality: \[ \sqrt{3} \cos x - \sin x \geq 2 \] Rearranging gives: \[ \sqrt{3} \cos x \geq \sin x + 2 \] Dividing through by 2 gives: \[ \frac{\sqrt{3}}{2} \cos x \geq \frac{1}{2} \sin x + 1 \] This can be rewritten using the sine addition formula: \[ \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x \geq 1 \] This is equivalent to: \[ \sin\left(\frac{\pi}{3} - x\right) \geq 1 \] The sine function achieves a maximum value of 1, so we set: \[ \frac{\pi}{3} - x = \frac{\pi}{2} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] Solving for \( x \): \[ x = \frac{\pi}{3} - \frac{\pi}{2} - 2k\pi = -\frac{\pi}{6} - 2k\pi \] This solution does not yield valid values in the interval \( [0, 4\pi] \). ### Step 3: Solve the second inequality Now we solve the second inequality: \[ \sqrt{3} \cos x - \sin x \leq -2 \] Rearranging gives: \[ \sqrt{3} \cos x \leq \sin x - 2 \] Dividing through by 2 gives: \[ \frac{\sqrt{3}}{2} \cos x \leq \frac{1}{2} \sin x - 1 \] This can be rewritten using the sine addition formula: \[ \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x \leq -1 \] This is equivalent to: \[ \sin\left(\frac{\pi}{3} - x\right) \leq -1 \] The sine function achieves a minimum value of -1, so we set: \[ \frac{\pi}{3} - x = \frac{3\pi}{2} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] Solving for \( x \): \[ x = \frac{\pi}{3} - \frac{3\pi}{2} - 2k\pi = -\frac{7\pi}{6} - 2k\pi \] Again, this solution does not yield valid values in the interval \( [0, 4\pi] \). ### Step 4: Finding valid solutions We can also check for specific angles where the sine function equals 1 or -1: 1. \( \frac{\pi}{3} - x = \frac{\pi}{2} \) gives \( x = \frac{\pi}{3} - \frac{\pi}{2} = -\frac{\pi}{6} \) (not valid). 2. \( \frac{\pi}{3} - x = \frac{3\pi}{2} \) gives \( x = \frac{\pi}{3} - \frac{3\pi}{2} = -\frac{7\pi}{6} \) (not valid). 3. Continue checking for valid values of \( k \) to find solutions within \( [0, 4\pi] \). ### Final Solutions After checking for valid \( k \) values, we find: 1. \( x = \frac{5\pi}{6} \) 2. \( x = \frac{11\pi}{6} \) 3. \( x = \frac{17\pi}{6} \) 4. \( x = \frac{23\pi}{6} \) Thus, the solutions in the interval \( [0, 4\pi] \) are: \[ x = \frac{5\pi}{6}, \frac{11\pi}{6}, \frac{17\pi}{6}, \frac{23\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|44 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve 2sqrt(2)cos x+sin x=3

Solve sin x+sqrt(3)cos x=sqrt(2)

Solve: cos 2x gt | sin x| x in [-pi,pi] .

Number of solutions of the equation sin x + cos x-2sqrt(2) sin x cos x=0 for x in [0, pi] is

Solve the equation sqrt(3)cos x+sin x=sqrt(2)

Solve |sin x+cos x|=|sin x|+|cos x|,x in[0,2 pi]

cos x-sin x = sqrt (2) cos (x + (pi) / (4))

Solve the equation sin x + cos x -2sqrt2 sin x cos x =0

Solve: cos 3x + sqrt3 sin 3x + sqrt2 lt 0 .

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to