Home
Class 12
MATHS
If the sum of all value of x satisfying ...

If the sum of all value of x satisfying the system of equations
`tan x + tan y+ tan x* tan y=5 `
`sin (x +y)=4 cos x * cos y`
is `(k pi )/2` , where ` x in (0, (pi)/(2))` then find the values of k .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: 1. **Equations**: - \( \tan x + \tan y + \tan x \tan y = 5 \) (1) - \( \sin(x+y) = 4 \cos x \cos y \) (2) 2. **Using the identity for sine**: From equation (2), we know that: \[ \sin(x+y) = \sin x \cos y + \cos x \sin y \] Therefore, we can rewrite equation (2) as: \[ \sin x \cos y + \cos x \sin y = 4 \cos x \cos y \] Dividing both sides by \( \cos x \cos y \) (assuming \( \cos x, \cos y \neq 0 \)): \[ \frac{\sin x}{\cos x} + \frac{\sin y}{\cos y} = 4 \] This simplifies to: \[ \tan x + \tan y = 4 \quad (3) \] 3. **Substituting equation (3) into equation (1)**: Now substituting \( \tan x + \tan y = 4 \) into equation (1): \[ 4 + \tan x \tan y = 5 \] This gives us: \[ \tan x \tan y = 1 \quad (4) \] 4. **Using the equations from (3) and (4)**: We have two equations now: - \( \tan x + \tan y = 4 \) (from (3)) - \( \tan x \tan y = 1 \) (from (4)) Let \( \tan x = a \) and \( \tan y = b \). Then we can write: \[ a + b = 4 \] \[ ab = 1 \] 5. **Forming a quadratic equation**: The equations can be used to form a quadratic: \[ t^2 - (a+b)t + ab = 0 \] Substituting the values: \[ t^2 - 4t + 1 = 0 \] 6. **Finding the roots**: We can find the roots using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -4, c = 1 \): \[ t = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3} \] Thus, the roots are \( \tan x_1 = 2 + \sqrt{3} \) and \( \tan x_2 = 2 - \sqrt{3} \). 7. **Finding the angles**: To find \( x_1 \) and \( x_2 \): \[ x_1 = \tan^{-1}(2 + \sqrt{3}), \quad x_2 = \tan^{-1}(2 - \sqrt{3}) \] 8. **Finding the sum of solutions**: The sum of the angles \( x_1 + x_2 \) can be calculated using the identity: \[ x_1 + x_2 = \tan^{-1}(2 + \sqrt{3}) + \tan^{-1}(2 - \sqrt{3}) = \frac{\pi}{2} \] 9. **Final result**: Since the sum of all values of \( x \) satisfying the equations is \( \frac{\pi}{2} \), we can express this as: \[ \frac{k \pi}{2} \quad \text{where } k = 1 \] Thus, the value of \( k \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|44 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If the sum of all values of x satisfying the system of equations tan x+tan y+tan x tan y=5 and sin(x+y)=4cos x cos y is (k pi)/(3) where x in(0,(pi)/(2)) then value of k is

The system of equations tan x=a cot x, tan 2x=b cos y

Find the general values of x and y satisfying the equations 5sin x cos y=14tan x=tan y

If (sin x)/(sin y)=(1)/(2),(cos x)/(cos y)=(3)/(2), where x,y in(0,(pi)/(2)), then the value of tan(x+y) is equal to

If tan(x+ y)tan(x-y)=1 , then the value of tan x is:

If 0

Find all number of pairs x,y that satisfy the equation tan^4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

If sin x cos y=(1)/(4) and 3tan x=4tan y then sin(x-y)=

If sin x cos y=(1)/(4) and 3tan x=4tan y then sin(x-y)=