Home
Class 12
MATHS
The number of solutions of cot(5pi sin ...

The number of solutions of `cot(5pi sin theta )=tan (5 pi cos theta ), AA theta in (0,2pi)` is

A

7

B

14

C

21

D

28

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot(5\pi \sin \theta) = \tan(5\pi \cos \theta) \) for \( \theta \) in the interval \( (0, 2\pi) \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \cot(5\pi \sin \theta) = \tan(5\pi \cos \theta) \] Using the identity \( \tan x = \cot\left(\frac{\pi}{2} - x\right) \), we can rewrite the right-hand side: \[ \cot(5\pi \sin \theta) = \cot\left(\frac{\pi}{2} - 5\pi \cos \theta\right) \] ### Step 2: Set the angles equal Since the cotangent function is equal when the angles are equal (plus an integer multiple of \( \pi \)), we can set the arguments equal: \[ 5\pi \sin \theta = \frac{\pi}{2} - 5\pi \cos \theta + n\pi \] where \( n \) is any integer. ### Step 3: Rearrange the equation Rearranging gives: \[ 5\pi \sin \theta + 5\pi \cos \theta = n\pi + \frac{\pi}{2} \] Factoring out \( 5\pi \) from the left side: \[ 5\pi (\sin \theta + \cos \theta) = n\pi + \frac{\pi}{2} \] Dividing through by \( \pi \): \[ 5(\sin \theta + \cos \theta) = n + \frac{1}{2} \] ### Step 4: Isolate \( \sin \theta + \cos \theta \) Rearranging gives: \[ \sin \theta + \cos \theta = \frac{n + \frac{1}{2}}{5} \] ### Step 5: Determine the range of \( \sin \theta + \cos \theta \) The maximum and minimum values of \( \sin \theta + \cos \theta \) can be found using the identity: \[ \sin \theta + \cos \theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \] Thus, the range is: \[ -\sqrt{2} \leq \sin \theta + \cos \theta \leq \sqrt{2} \] ### Step 6: Set up inequalities We can set up inequalities based on the range: \[ -\sqrt{2} \leq \frac{n + \frac{1}{2}}{5} \leq \sqrt{2} \] Multiplying through by 5 gives: \[ -5\sqrt{2} \leq n + \frac{1}{2} \leq 5\sqrt{2} \] Subtracting \( \frac{1}{2} \): \[ -5\sqrt{2} - \frac{1}{2} \leq n \leq 5\sqrt{2} - \frac{1}{2} \] ### Step 7: Calculate bounds for \( n \) Calculating \( 5\sqrt{2} \): \[ 5\sqrt{2} \approx 5 \times 1.414 = 7.07 \] Thus: \[ -5\sqrt{2} - \frac{1}{2} \approx -7.07 - 0.5 = -7.57 \] and \[ 5\sqrt{2} - \frac{1}{2} \approx 7.07 - 0.5 = 6.57 \] ### Step 8: Determine integer values for \( n \) The integer values of \( n \) satisfying: \[ -7.57 \leq n \leq 6.57 \] are: \[ n = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 \] This gives us a total of 14 integer values. ### Conclusion Thus, the number of solutions for the equation \( \cot(5\pi \sin \theta) = \tan(5\pi \cos \theta) \) in the interval \( (0, 2\pi) \) is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|44 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of tan(5 pi cos theta)=cot(5 pi sin theta) for theta in[0,pi]

The number of solutions of the equation sin 2 theta-2 cos theta +4 sin theta=4 in [0, 5pi] is equal to

tan theta=-2 AA theta in (0,pi) then

tan (pi cos theta) = cot (pi sin theta)

Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 theta * cos 7 theta in [0,(pi)/2]

The number of distinct solutions of sin5 theta*cos3 theta*cos7 theta=0 in [0,(pi)/(2)] is :

The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for theta in [0, 2pi] is

Number of solutions of the equation "sin" 2 theta + 2 = 4"sin" theta + "cos" theta lying in the interval [pi, 5pi] is

The nummber of distinct solutions of sin5 theta*cos3 theta=sin9 theta*cos7 theta in [0,(pi)/(2)] is

ARIHANT MATHS-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (Single Option Correct Type Questions)
  1. If sqrt(3) sin x - cos x ="min"(alpha in R){2,e^(2),pi, alpha^(2)-4al...

    Text Solution

    |

  2. The number of solutions of the equation cos 4x+6=7 cos 2x , when x ...

    Text Solution

    |

  3. The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ),...

    Text Solution

    |

  4. If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the ...

    Text Solution

    |

  5. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  6. If the equation cos 3 x cos^(3) x + sin 3 x sin^(3) x =0 , then x is ...

    Text Solution

    |

  7. Total number of solutions of sinx=(|x|)/(10) is equal to

    Text Solution

    |

  8. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  9. x(1) and x(2) are two positive value of x for which 2 cos x,|cos x|...

    Text Solution

    |

  10. If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan...

    Text Solution

    |

  11. The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alph...

    Text Solution

    |

  12. The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n...

    Text Solution

    |

  13. If sin (2alpha) /cos(2alpha) < 0 If alpha lies in

    Text Solution

    |

  14. If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin...

    Text Solution

    |

  15. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  16. If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

    Text Solution

    |

  17. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  18. If cot (alpha + beta )=0 , then sin(alpha+2beta )=

    Text Solution

    |

  19. If : cot theta + cot((pi)/4 + theta) = 2, then : theta =

    Text Solution

    |

  20. If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))), then the valu...

    Text Solution

    |