Home
Class 12
MATHS
The value of the determinants |{:(1,a,a^...

The value of the determinants `|{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}|` is zero if

A

` x = n pi `

B

`x = n pi //2 `

C

`x=(2n+1)pi//2`

D

`x=(1+a^(2))/(2a)n in I `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 1 & a & a^2 \\ \cos((n-1)x) & \cos(nx) & \cos((n+1)x) \\ \sin((n-1)x) & \sin(nx) & \sin((n+1)x) \end{vmatrix} \] and find the condition under which \(D = 0\), we can follow these steps: ### Step 1: Substitute \(n = 1\) Assuming \(n = 1\), the determinant simplifies to: \[ D = \begin{vmatrix} 1 & a & a^2 \\ \cos(0) & \cos(x) & \cos(2x) \\ \sin(0) & \sin(x) & \sin(2x) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 & a & a^2 \\ 1 & \cos(x) & \cos(2x) \\ 0 & \sin(x) & \sin(2x) \end{vmatrix} \] ### Step 2: Expand the Determinant We can expand the determinant along the first row: \[ D = 1 \cdot \begin{vmatrix} \cos(x) & \cos(2x) \\ \sin(x) & \sin(2x) \end{vmatrix} - a \cdot \begin{vmatrix} 1 & \cos(2x) \\ 0 & \sin(2x) \end{vmatrix} + a^2 \cdot \begin{vmatrix} 1 & \cos(x) \\ 0 & \sin(x) \end{vmatrix} \] Calculating these 2x2 determinants: 1. \(\begin{vmatrix} \cos(x) & \cos(2x) \\ \sin(x) & \sin(2x) \end{vmatrix} = \cos(x) \sin(2x) - \sin(x) \cos(2x) = \sin(2x - x) = \sin(x)\) 2. \(\begin{vmatrix} 1 & \cos(2x) \\ 0 & \sin(2x) \end{vmatrix} = 1 \cdot \sin(2x) - 0 = \sin(2x)\) 3. \(\begin{vmatrix} 1 & \cos(x) \\ 0 & \sin(x) \end{vmatrix} = 1 \cdot \sin(x) - 0 = \sin(x)\) Putting it all together, we have: \[ D = \sin(x) - a \sin(2x) + a^2 \sin(x) \] ### Step 3: Factor the Expression Now we can factor out \(\sin(x)\): \[ D = \sin(x)(1 + a^2 - a \cdot 2 \cos(x)) \] ### Step 4: Set the Determinant to Zero For the determinant to be zero, we need: \[ \sin(x) = 0 \quad \text{or} \quad 1 + a^2 - 2a \cos(x) = 0 \] ### Step 5: Solve for \(x\) 1. **From \(\sin(x) = 0\)**: \[ x = n\pi, \quad n \in \mathbb{Z} \] 2. **From \(1 + a^2 - 2a \cos(x) = 0\)**: Rearranging gives: \[ 2a \cos(x) = 1 + a^2 \quad \Rightarrow \quad \cos(x) = \frac{1 + a^2}{2a} \] Thus, \(x = \cos^{-1}\left(\frac{1 + a^2}{2a}\right)\). ### Conclusion The value of the determinant is zero if: \[ x = n\pi \quad \text{or} \quad \cos(x) = \frac{1 + a^2}{2a} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|44 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta=|(a^2,a,1),(cos(nx),cos (n + 1) x,cos(n+2) x),(sin(nx),sin (n +1)x,sin (n + 2) x)| is independent of

The value of the determinant |a^(2)a1cos nx cos(n+1)x cos(n+2)x sin nx sin(n+1)x sin(n+2)x is independent of n(b)a(c)x(d) none of these

Solve for x the equation |(a^(2),a,1),(sin(n+1)x,sin nx,sin(n-1)x),(cos(n+1)x,cosn x,cos(n-1)x)|=0

If maximum and minimum values of the determinant |{:(1+sin^2x,cos^2x,sin2x),(sin^2x,1+cos^2x,sin2x),(sin^2x,cos^2x,1+sin2x):}| are alpha and beta then show that (alpha^(2n)-beta^(2n)) is always an even integer for n in N .

D(cos^(-1)x+sin^(-1)x)^(n)=

cos (n + 1) A cos (n + 2) A + sin (n + 1) A sin (n + 2) A =

sin x+sin3x+...+sin(2n-1)x=(sin^(2)nx)/(sin x)

|sin nx|<=n|sin x|,n in N

ARIHANT MATHS-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (Single Option Correct Type Questions)
  1. The number of solutions of the equation cos 4x+6=7 cos 2x , when x ...

    Text Solution

    |

  2. The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ),...

    Text Solution

    |

  3. If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the ...

    Text Solution

    |

  4. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  5. If the equation cos 3 x cos^(3) x + sin 3 x sin^(3) x =0 , then x is ...

    Text Solution

    |

  6. Total number of solutions of sinx=(|x|)/(10) is equal to

    Text Solution

    |

  7. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  8. x(1) and x(2) are two positive value of x for which 2 cos x,|cos x|...

    Text Solution

    |

  9. If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan...

    Text Solution

    |

  10. The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alph...

    Text Solution

    |

  11. The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n...

    Text Solution

    |

  12. If sin (2alpha) /cos(2alpha) < 0 If alpha lies in

    Text Solution

    |

  13. If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin...

    Text Solution

    |

  14. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  15. If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

    Text Solution

    |

  16. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  17. If cot (alpha + beta )=0 , then sin(alpha+2beta )=

    Text Solution

    |

  18. If : cot theta + cot((pi)/4 + theta) = 2, then : theta =

    Text Solution

    |

  19. If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))), then the valu...

    Text Solution

    |

  20. If |1-(|sin x |)/(1+ sin x )| ge (2)/(3), then sin x lies in

    Text Solution

    |