Home
Class 12
MATHS
If tan(pi cos theta )= cot (pi sin thet...

If ` tan(pi cos theta )= cot (pi sin theta ) ` ,then ` cos^(2)(theta -pi//4) ` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\pi \cos \theta) = \cot(\pi \sin \theta) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \tan(\pi \cos \theta) = \cot(\pi \sin \theta) \] Recall that \( \cot(x) = \frac{1}{\tan(x)} \), so we can rewrite the equation as: \[ \tan(\pi \cos \theta) = \frac{1}{\tan(\pi \sin \theta)} \] This implies: \[ \tan(\pi \cos \theta) \tan(\pi \sin \theta) = 1 \] ### Step 2: Use the identity for tangent Using the identity \( \tan(A) \tan(B) = 1 \) implies \( A + B = \frac{\pi}{2} + n\pi \) for some integer \( n \). Therefore, we can write: \[ \pi \cos \theta + \pi \sin \theta = \frac{\pi}{2} + n\pi \] Dividing through by \( \pi \): \[ \cos \theta + \sin \theta = \frac{1}{2} + n \] ### Step 3: Simplify the equation For simplicity, we can consider the case when \( n = 0 \): \[ \cos \theta + \sin \theta = \frac{1}{2} \] ### Step 4: Square both sides To eliminate the sine and cosine, we can square both sides: \[ (\cos \theta + \sin \theta)^2 = \left(\frac{1}{2}\right)^2 \] Expanding the left side: \[ \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta = \frac{1}{4} \] Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ 1 + 2 \cos \theta \sin \theta = \frac{1}{4} \] Rearranging gives: \[ 2 \cos \theta \sin \theta = \frac{1}{4} - 1 = -\frac{3}{4} \] Thus: \[ \cos \theta \sin \theta = -\frac{3}{8} \] ### Step 5: Find \( \cos^2(\theta - \frac{\pi}{4}) \) Using the angle subtraction formula: \[ \cos(\theta - \frac{\pi}{4}) = \cos \theta \cos \frac{\pi}{4} + \sin \theta \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}(\cos \theta + \sin \theta) \] Substituting \( \cos \theta + \sin \theta = \frac{1}{2} \): \[ \cos(\theta - \frac{\pi}{4}) = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{4} \] Now squaring this: \[ \cos^2(\theta - \frac{\pi}{4}) = \left(\frac{\sqrt{2}}{4}\right)^2 = \frac{2}{16} = \frac{1}{8} \] ### Final Answer Thus, we find: \[ \cos^2(\theta - \frac{\pi}{4}) = \frac{1}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|2 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|13 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|44 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If sin(pi cos theta)=cos(pi sin theta),then sin2 theta=

If sin(pi cos theta)=cos(pi sin theta), then sin2 theta=

If tan(pi cos theta)=cot(pi sin theta) then sin(theta+(pi)/(4)) equals

If sin(pi cos theta)=cos(pi sin theta), then of the value cos(theta+-(pi)/(4)) is

If sin (pi cos theta) = cos (pi sin theta). Find sin (2 theta)

If sin(pi cot theta)=cos(pi tan theta) then cos ec2 theta equals

If sin((pi cos theta)/(2))=cos((pi sin theta)/(2)) then cos2 theta can be equal to

If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 theta is equal to