Home
Class 11
MATHS
Let f: R->R be such that f(1)=3a n d...

Let `f: R->R` be such that `f(1)=3a n df^(prime)(1)=6.` Then `lim_(x->0)((f(1+x))/(f(1)))^(1//x)=` (a)`1` (b) `e^(1/2)` (c) `e^2` (d) `e^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R->R be such that f(1)=3 and f^(prime)(1)=6. Then lim_(x->0)((f(1+x))/(f(1)))^(1//x)=

Let f: R->R be such that f(1)=3 and f^(prime)(1)=6. Then lim_(x->0)((f(1+x))/(f(1)))^(1//x)= (a) 1 (b) e^(1/2) (c) e^2 (d) e^3

Let f : R to R be such that f (1) = 3 and f'(1) = 6. Then, lim_( x to 0) [(f(1+x))/(f(1))]^(1//x) equals

Let f:R rarr R be such that f(1)=3andf'(1)=6. Then lim_(x rarr0)((f(1+x))/(f(1)))^(1/x)=(a)1( b) e^((1)/(2))(c)e^(2) (d) e^(3)

Let f:R to R be such that f(x)=3 and f'(1)=6 then Lt_(x to 0)((f(1+x))/(f(1)))^(1//x)=

Let f: RvecR be such that f(a)=1,f^(prime)(a)=2. Then (lim)_(xvec0)((f^2(a+x))/(f(a)))^(1//x) is a. e^2 b. e^4 c. e^(-4) d. 1//e

Let R rarr R be such that f(1)=3 and *f'(1)=6. then lim_(x rarr0)((f(1+x))/(f(1))) equal : (1)1(2)e^((1)/(2))(3)e^(2) (4) e^(3)

Let f:Rvec R be such that f(a)=1,f'(a)=2 Then (lim_(x))_(x0)((f^(2)(a+x))/(f(a)))^(1/x) is a e^(2) b.e^(4) c.e^(-4)d.1/e

Let f : R to R ,f (a) =1, f '(a) = 2 then prove that Lt _(x to 0) ((f ^(2) (a + x ) )/( f (a)))^(1/x) = e ^(4)