Home
Class 11
MATHS
The value of lim(n->oo)(1.sum(r=1)^n(r)+...

The value of `lim_(n->oo)(1.sum_(r=1)^n(r)+2.sum_(r=1)^(n-1)(r)+3sum_(r=1)^(n-2)(r)+.....+n.1)/n^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

Evaluate: lim_(n rarr oo)(sum_(r=1)^(n)sqrt(r)sum_(r=1)^(n)(1)/(sqrt(tau)))/(sum_(r=1)^(n)r)

sum_(r=1)^(n)r^(2)-sum_(m=1)^(n)sum_(r=1)^(m)r is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :