Home
Class 11
MATHS
Let f(x)=|x|+|sinx|, x in (-pi/ 2,3pi/2)...

Let `f(x)=|x|+|sinx|, x in (-pi/ 2,3pi/2).` Then , `f` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x) = |x|+|sin x|, x in (-pi/2, (3pi)/2) . Then, f is :

Let f(x)=sinx+2cos^2x , x in [pi/6,(2pi)/3] , then maximum value of f(x) is

Let f(x)=sinx+2cos^(2)x,(pi)/(4)lexle(3pi)/(4) . Then f attains its-

Let f(x)=sinx+2cos^2x,pi/4lexle(3pi)/4 . then f attains its

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Let f(x)=2sinx+tax-3x Statement-1: f(x) does not attain extreme in (-pi//2,pi//2) Statement-2 : f(x) is strictly increasing on (-pi//2,pi//2)