Home
Class 11
MATHS
If {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x...

If `{(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2,` where {.} represents the fractional part function, then `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} represents the fractional part function, then lim_(xto pi//2)f(x) is

If f(x)={(sin{cosx}/(x-pi/2), x ne pi/2),(1, x=pi/2):} , where {.} denotes the fractional part of x, then f(x) is :

If f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)/(2)):}, where {k} represents the fractional park of k, then:

If f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)/(2)):}, where {k} represents the fractional park of k, then:

If int (cosec ^(2)x-2010)/(cos ^(2010)x)dx = =(f (x))/((g (x ))^(2010))+C, where f ((pi)/(4))=1, then the number of solution of the equation (f(x))/(g (x))={x} in [0,2pi] is/are: (where {.} represents fractional part function)

If int (cosec ^(2)x-2010)/(cos ^(2010)x)dx = =(f (x))/((g (x ))^(2010))+C, where f ((pi)/(4))=1, then the number of solution of the equation (f(x))/(g (x))={x} in [0,2pi] is/are: (where {.} represents fractional part function)

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

If f:R->R and f(x)=sin(pi{x})/(x^4+3x^2+7) , where {} is a fractional part of x , then