Home
Class 12
MATHS
sin h^(-1)(x/(sqrt(1-x^2)))=...

`sin h^(-1)(x/(sqrt(1-x^2)))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))

solve : sin ^(-1) ""((x)/(sqrt(1+x^(2))))-sin ^(-1)((1)/(sqrt(1+x^(2))))= sin ^(-1) ((1+x)/(1+x^(2)))

(tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]

Solve: sin^-1 (x/(sqrt(1+x^2)))- sin (1/(sqrt(1+x^2)))= sin^-1 ((1+x)/(1+x^2))

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sqrt(1+x^2)) -cos^(-1)1/(sqrt(1+x^2)) (d) -cos e c^(-1)(sqrt(1+x^2))/x

If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sqrt(1+x^2)) -cos^(-1)1/(sqrt(1+x^2)) (d) -cos e c^(-1)(sqrt(1+x^2))/x