Home
Class 12
PHYSICS
The maximum and minimum values of x^3-18...

The maximum and minimum values of `x^3-18x^2+96x` in interval `(0,9)` are

A

160, 0

B

60, 0

C

160, 128

D

120, 28

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = x^3 - 18x^2 + 96x \) in the interval \( (0, 9) \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \): \[ f'(x) = \frac{d}{dx}(x^3 - 18x^2 + 96x) \] Using the power rule, we get: \[ f'(x) = 3x^2 - 36x + 96 \] ### Step 2: Set the derivative to zero to find critical points To find the critical points, we set the derivative equal to zero: \[ 3x^2 - 36x + 96 = 0 \] Dividing the entire equation by 3 simplifies it to: \[ x^2 - 12x + 32 = 0 \] ### Step 3: Factor the quadratic equation Next, we factor the quadratic: \[ (x - 4)(x - 8) = 0 \] This gives us the critical points: \[ x = 4 \quad \text{and} \quad x = 8 \] ### Step 4: Evaluate the function at critical points and endpoints Now we will evaluate \( f(x) \) at the critical points and the endpoints of the interval \( (0, 9) \). The endpoints are \( x = 0 \) and \( x = 9 \). 1. **At \( x = 0 \)**: \[ f(0) = 0^3 - 18(0^2) + 96(0) = 0 \] 2. **At \( x = 4 \)**: \[ f(4) = 4^3 - 18(4^2) + 96(4) = 64 - 288 + 384 = 160 \] 3. **At \( x = 8 \)**: \[ f(8) = 8^3 - 18(8^2) + 96(8) = 512 - 1152 + 768 = 128 \] 4. **At \( x = 9 \)**: \[ f(9) = 9^3 - 18(9^2) + 96(9) = 729 - 1458 + 864 = 135 \] ### Step 5: Determine the maximum and minimum values Now we compare the values obtained: - \( f(0) = 0 \) - \( f(4) = 160 \) - \( f(8) = 128 \) - \( f(9) = 135 \) From these values, we can conclude: - The **maximum value** is \( 160 \) at \( x = 4 \). - The **minimum value** is \( 0 \) at \( x = 0 \). ### Final Answer - Maximum value: \( 160 \) - Minimum value: \( 0 \)

To find the maximum and minimum values of the function \( f(x) = x^3 - 18x^2 + 96x \) in the interval \( (0, 9) \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \): \[ f'(x) = \frac{d}{dx}(x^3 - 18x^2 + 96x) \] Using the power rule, we get: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,2 pi]

Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the interval [0,1] .

Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the interval [0,1] .

Find the maximum and minimum values of f(x)=2x^(3)-24x+107 in the interval [1,3]

Find the maximum and minimum values of 2x^(3)-24x+107 on the interval [-3,3]

Find the maximum and minimum values of f(x)=sin x in the interval [pi,2 pi].

Prove that maximum and minimum values of the function x^(3)-18x^(2)+96x in the interval (0,9) are given by 160 and 128 respectively.

Prove that,maximum and minimum values of the function x^(3)-18x^(2)+96x in the interval (0,9) are given by 160 and 128 respectively.

The maximum & minimum value of y=x+(1)/(x) in interval [(1)/(3),(4)/(3)]

The maximum value of x^(3)-3x in the interval [0,2] is