Home
Class 12
PHYSICS
int(2sinx+(1)/(x))dx is equal to...

`int(2sinx+(1)/(x))dx` is equal to

A

`-2cosx+logx+c`

B

`2cosx+logx+c`

C

`-2sinx-(1)/(x^2)+c`

D

`-2cosx+(1)/(x^2)+c`

Text Solution

Verified by Experts

The correct Answer is:
A

`int(2sinx+(1)/(x))dx=-2cosx+logx+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sinx)/(sinx-a)dx is equal to

inte^(sinx)((sinx+1)/(secx))dx is equal to

((int (x)/(2))/(-(x)/(2)))log((2-sinx)/(2+sin x)) dx is equal to

int(x+sinx)/(1+cosx)\ dx is equal to

int x sinx sec^(3)x dx is equal to

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

int(cosx-1)/(sinx+1).e^(x)dx is equal to