Home
Class 12
PHYSICS
int(sqrt(1+cosx)dx equals...

`int(sqrt(1+cosx)dx` equals

A

`2sqrt2sin(x)/(2)+c`

B

`-2sqrt2sin(x)/(2)+c`

C

`-2sqrt2cos(x)/(2)+c`

D

`2sqrtcos(x)/(2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Use the Double Angle Formula We start by rewriting \( 1 + \cos x \) using the double angle identity: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can express the integral as: \[ \int \sqrt{1 + \cos x} \, dx = \int \sqrt{2 \cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Simplify the Square Root Next, we simplify the square root: \[ \sqrt{2 \cos^2\left(\frac{x}{2}\right)} = \sqrt{2} \cdot |\cos\left(\frac{x}{2}\right)| \] For the purpose of integration, we can assume \( \cos\left(\frac{x}{2}\right) \) is non-negative in the interval we are considering, so we have: \[ \sqrt{2} \cdot \cos\left(\frac{x}{2}\right) \] ### Step 3: Set Up the Integral Now, we can rewrite our integral: \[ \int \sqrt{1 + \cos x} \, dx = \sqrt{2} \int \cos\left(\frac{x}{2}\right) \, dx \] ### Step 4: Perform the Integration We need to integrate \( \cos\left(\frac{x}{2}\right) \). We can use a substitution: Let \( u = \frac{x}{2} \), then \( dx = 2 \, du \). The integral becomes: \[ \sqrt{2} \int \cos(u) \cdot 2 \, du = 2\sqrt{2} \int \cos(u) \, du \] The integral of \( \cos(u) \) is \( \sin(u) \), so we have: \[ 2\sqrt{2} \sin(u) + C \] ### Step 5: Substitute Back Now, substituting back \( u = \frac{x}{2} \): \[ 2\sqrt{2} \sin\left(\frac{x}{2}\right) + C \] ### Final Answer Thus, the final result for the integral \( \int \sqrt{1 + \cos x} \, dx \) is: \[ \int \sqrt{1 + \cos x} \, dx = 2\sqrt{2} \sin\left(\frac{x}{2}\right) + C \]

To solve the integral \( \int \sqrt{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Use the Double Angle Formula We start by rewriting \( 1 + \cos x \) using the double angle identity: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can express the integral as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int sqrt(1+cos ec)dx equals

int1/sqrt(1+cosx)dx=

int(sqrt(x)dx)/(1+x) equals

int sqrt(sec x-1)dx equal to

int sqrt(1+secx) dx is equal to:

int(dx)/(1+cosx)

int(cosx)/(sqrt(1+sinx))dx is equal to

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/sqrt(1 + cosx) is equal to

int(cosx)/(1-cosx)dx=