Home
Class 12
PHYSICS
If y=sin(2x+3) then intydx will be:...

If `y=sin(2x+3)` then `intydx` will be:

A

`(cos(2x+3))/(2)`

B

`-(cos(2x+3))/(2)+C`

C

`-cos(2x+3)`

D

`-2cos(2x+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral of \( y = \sin(2x + 3) \), we need to find \( \int y \, dx \). ### Step-by-step Solution: 1. **Identify the integral**: We start with the integral: \[ \int \sin(2x + 3) \, dx \] 2. **Substitution**: To simplify the integral, we can use substitution. Let: \[ t = 2x + 3 \] Then, we differentiate \( t \) with respect to \( x \): \[ dt = 2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{2} \] 3. **Rewrite the integral**: Substitute \( t \) and \( dx \) into the integral: \[ \int \sin(2x + 3) \, dx = \int \sin(t) \cdot \frac{dt}{2} \] This simplifies to: \[ \frac{1}{2} \int \sin(t) \, dt \] 4. **Integrate**: The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) \] Therefore, we have: \[ \frac{1}{2} \int \sin(t) \, dt = \frac{1}{2} (-\cos(t)) = -\frac{1}{2} \cos(t) \] 5. **Back-substitute**: Now, we substitute back \( t = 2x + 3 \): \[ -\frac{1}{2} \cos(t) = -\frac{1}{2} \cos(2x + 3) \] 6. **Add the constant of integration**: Finally, we add the constant of integration \( C \): \[ \int \sin(2x + 3) \, dx = -\frac{1}{2} \cos(2x + 3) + C \] ### Final Answer: \[ \int \sin(2x + 3) \, dx = -\frac{1}{2} \cos(2x + 3) + C \]

To solve the integral of \( y = \sin(2x + 3) \), we need to find \( \int y \, dx \). ### Step-by-step Solution: 1. **Identify the integral**: We start with the integral: \[ \int \sin(2x + 3) \, dx ...
Promotional Banner

Similar Questions

Explore conceptually related problems

if y=3x^3+2x+4 , then intydx will be

If y = sin3x then (d^2y)/(dx^2) =?

2x + 3y = sin y

if y=e^(2x)sin3x then find (dy)/(dx)

If sin(x+y)+cos(2x+2y)=ln(3x+3y) ,then (dy)/(dx) is

If 0

If sin y=x sin(a+y), then show that: (dy)/(dx)=(sin a)/(1-2x cos a+x^(2))

" If "x=sin1,y=sin2,z=sin3" then "

If x+y=(4pi)/(3) and sin x = 2 sin y , then