Home
Class 12
PHYSICS
If y=x^2, then int0^(2)ydx will be :...

If `y=x^2`, then `int_0^(2)ydx` will be :

A

`(x^3)/(3)+C`

B

`(1)/(3)`

C

`(2)/(3)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

`y=x^(2)sinx^(3),int_(0)^(1)ydx=int_(0)^(2)x^(2)dx=[(x^(3))/(3)]=(1)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If ={x}^([x]) then int_(0)^(3)ydx

If y=x^(2)sin(x^(3)) , then int ydx will be :

int_(-a)^(a)x^(2)ydx

If x=x(y) is the solution of the differential equation, ydx-(x+2y^2)dy=0 , with x(-pi)=pi^2 , then x is equal to :

The solution of the differential equation ydx-(x+2y^(2))dy=0 is x=f(y). If f(-1)=1, then f(1) is equal to

Solve ydx-xdy=x^(2)ydx .

(dy)/(dx)=y+int_(0)^(1)ydx given y=1 where x=0

The solution of the equation ydx-xdy=x^2ydx is (A) y^2e^(-x^2/2)=C^2x^2 (B) y=Cxe^(x^2/2) (C) x^2=C^2y^2e^(x^2) (D) ye^(x^2)=x

Solution of y dx - x dy = x^(2)ydx is