Home
Class 12
PHYSICS
int(cos((x)/(2))-sin((x)/(2)))^2dx=...

`int(cos((x)/(2))-sin((x)/(2)))^2dx=`

A

`x+cosx+c`

B

`2cos^2((x)/(2))+c`

C

`(1)/(3)(cos((x)/(2))-(x)/(2))^3+c`

D

`x-cosx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 \, dx \), we will follow these steps: ### Step 1: Expand the Square We start by expanding the expression inside the integral: \[ \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 = \cos^2\left(\frac{x}{2}\right) - 2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) \] ### Step 2: Use Trigonometric Identity Using the identity \( \cos^2 A + \sin^2 A = 1 \): \[ \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) = 1 \] Thus, we can rewrite the integral as: \[ \int \left( 1 - 2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right) \right) \, dx \] ### Step 3: Simplify the Expression Recognizing that \( 2\cos A \sin A = \sin(2A) \): \[ -2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right) = -\sin(x) \] So, the integral simplifies to: \[ \int \left( 1 - \sin(x) \right) \, dx \] ### Step 4: Integrate Now we can integrate term by term: \[ \int 1 \, dx - \int \sin(x) \, dx = x + \cos(x) + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 \, dx = x + \cos(x) + C \]

To solve the integral \( \int \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 \, dx \), we will follow these steps: ### Step 1: Expand the Square We start by expanding the expression inside the integral: \[ \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 = \cos^2\left(\frac{x}{2}\right) - 2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos.(x)/(2)-sin.(x)/(2))^(2)dx equals

int(cos(x/2)-sin(x/2))^(2)dx=

int(cos2x)/(sin x)dx

int(cos x)/(sin^(2)x)dx

int(cos x)/(sin^(2)x)dx

int(cos^(2)x)/(sin x)dx

int(cos^(2)x)/(sin x)dx

int(cos x)/((1-sin x)(2-sin x))dx

int(sin^(3)(x)/(2)+cos^(3)(x)/(2))/(sin(x)/(2)+cos(x)/(2))dx

int[(sin^(2).(x)/(2)-cos^(2).(x)/(2))^(2)+4sin^(2).(x)/(2).cos^(2).(x)/(2)]dx=