Home
Class 12
PHYSICS
If |vecA+vecB|=|vecA|+|vecB|, then angle...

If `|vecA+vecB|=|vecA|+|vecB|`, then angle between `vecA` and `vecB` will be

A

`90^@`

B

`120^@`

C

`0^@`

D

`60^@`

Text Solution

Verified by Experts

The correct Answer is:
C

Resultant of two vectors `vecA` and `vecB` can be given by `vecR=vecR+vecB`
`vecR=vecA+vecB`
`|vecR|=|vecA+vecB|=sqrt(A^(2)+B^(2)+2ABcostheta)`
If `theta=0^(@)`, then `|vecR|=A+B=|vecA|+|vecB|`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vecA-vecB|=|vecA|=|vecB| , the angle between vecA and vecB is

if| vecAxxvecB|=|vecA.vecB| , then angle between vecA and vecB will be

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If |vecA+vecB|=|vecA|=|vecB| then angle between A and B will be

If vecA*vecB=|vecAxxvecB| . Then angle between vecA and vecB is

If vecA.vecB = |vecA xx vecB| , find angle between vecA and vecB .

Statement-1:If , |vec A+vec B| =|vecA-vecB| then angle between vecA and vecB is 90^(@) Statement-2 :vecA+vecB=vecB+vecA

If |veca+vecb|^2=|veca|^2+|vecb|^2 then angle between veca and vecb is

The vector vecA and vecB are such that |vecA+vecB|=|vecA-vecB| . The angle between vectors vecA and vecB is -