Home
Class 12
PHYSICS
If |vecAxxvecB|=sqrt3vecAvecB, then the ...

If `|vecAxxvecB|=sqrt3vecAvecB`, then the velue of `|vecA+vecB|` is

A

(A^2+B^2+(AB)/(sqrt3))^((1)/(2))`

B

`A+B`

C

`(A^2B^2+sqrt3AB)^((1)/(2))`

D

`(A^2+B^2+AB)^((1)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D

`|vecAxxvecB|=sqrt(3)(vecA.vecB)`
AB `sintheta=sqrt(3)Abcosthetaimpliestantheta=sqrt(3)becausetheta=60^@`
Now `|vecR|=|vecA+vecB|=sqrt(A^(2)+B^(2)+2ABcostheta)`
`=sqrt(A^(2)+B^(2)+2AB((1)/(2)))=(A^(2)+B^(2)AB)^((1)/(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vecAxxvecB|=sqrt(3) vecA.vecB , then the value of |vecA+vecB| is

If |vecAxxvecB|=sqrt3 vecA.vecB then |vecA+vecB|=

if| vecAxxvecB|=|vecA.vecB| , then angle between vecA and vecB will be

When vecA.vecB=-|vecA||vecB| , then :-

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

For the any two vecrtors vecA and vecB , if vecA.vecB=|vecAxxvecB| , the magnitude of vecC=vecA+vecB is equal to

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt(3) , then the value of (2veca+5vecb) . (3veca+vecb+vecaxxvecb)=