Home
Class 12
MATHS
Let A be a 2""xx""2 matrix Statement...

Let A be a `2""xx""2` matrix Statement 1 : `a d j""(a d j""A)""=""A` Statement 2 : `|a d j""A|""=""|A|` (1) Statement1 is true, Statement2 is true, Statement2 is a correct explanation for statement1 (2) Statement1 is true, Statement2 is true; Statement2 is not a correct explanation for statement1. (3) Statement1 is true, statement2 is false. (4) Statement1 is false, Statement2 is true

Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|6 Videos
  • PARABOLA

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|9 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x|x| and g(x)=s in x Statement 1 : gof is differentiable at x=0 and its derivative is continuous at that point Statement 2: gof is twice differentiable at x=0 (1) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for statement 1 (2) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1. (3) Statement 1 is true, statement 2 is false. (4) Statement 1 is false, Statement 2 is true

Statement 1: The variance of first n even natural numbers is (n^2-1)/4 Statement 2: The sum of first n natural numbers is (n(n+1)/2 and the sum of squares of first n natural numbers is (n(n+1)(2n+1)/6 (1) Statement1 is true, Statement2 is true, Statement2 is a correct explanation for statement1 (2) Statement1 is true, Statement2 is true; Statement2 is not a correct explanation for statement1. (3) Statement1 is true, statement2 is false. (4) Statement1 is false, Statement2 is true

If A is 2 x 2 invertible matrix such that A=adjA-A^-1 Statement-I 2A^2+I=O(null matrix) Statement-II: 2|A|=1 (i) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for Statement-I (2) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for Statement-I. 3) Statement-I is true, Statement-II is false. (4) Statement-I is false, Statement-II is true.

Statement-1: intsin^-1xdx+intsin^-1sqrt(1-x^2)dx=pi/2x+c Statement-2: sin^-1x+cos^-1x=pi/2 (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Consider the system of equations x-2y+3z=1;-x+y-2z=; x-3y+4z=1. Statement 1: The system of equations has no solution for k!=3. Statement2: The determinant |1 3-1-1-2k1 4 1|!=0,\ for\ k!=3. Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

Let f(x)={x^n sin (1/x) , x!=0; 0, x=0; and n>0 Statement-1: f(x) is continuous at x=0 and AA n>0. and Statement-2: f(x) is differentiable at x=0 AA n>0 (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True.

Let R be the set of real numbers. Statement-1 : A""=""{(x ,""y) in R""xx""R"":""y-x is an integer} is an equivalence relation on R. Statement-2 : B""=""{(x ,""y) in R""xx""R"":""x""=alphay for some rational number a} is an equivalence relation on R. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2 is false. Statement-1 is false, Statement-2 is true.

Statement-1 : The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is empty is ^9C_3 . Statement-2 : The number of ways of choosing any 3 places from 9 different places is ^9C_3 . Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2 is false. Statement-1 is false, Statement-2 is true.

Let A and B be two symmetric matrices of order 3. Statement-1 : A(BA) and (AB)A are symmetric matrices. Statement-2 : AB is symmetric matrix if matrix multiplication of A with B is commutative. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2 is false. Statement-1 is false, Statement-2 is true.

Statement-1: The function F(x)=intsin^2xdx satisfies F(x+pi)=F(x),AAxinR ,Statement-2: sin^2(x+pi)=sin^2x (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.