Home
Class 11
MATHS
lim(x->0) tanx /{sqrt(1+sinx)-sqrt(1-sin...

`lim_(x->0) tanx /{sqrt(1+sinx)-sqrt(1-sinx)}` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(sqrt(1+sinx)-sqrt(1-sinx))/tanx

lim_(x rarr 0) (sqrt(1+sinx)-sqrt(1-sinx))/x=

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

The value of lim_(xrarr0)((1+tanx)/(1+sinx))^((2)/(sinx)) is equal to

The value of lim_(xrarr0)((1+tanx)/(1+sinx))^((2)/(sinx)) is equal to

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is