Home
Class 12
MATHS
Solve 1/4 x ^(log(2)sqrtx)=(2*x^(log(2)x...

Solve `1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: 1/4x^(log_2sqrt(x))=(2. x^((log)_2x))^(1/4)

Solve sqrt(log_(2)x^(4))+4log_(4)((2)/(x))^((1)/(2))=2

Solve log_(2)(4xx3^(x)-6)-log_(2)(9^(x)-6)=1 .

Solve log_(2)(4xx3^(x)-6)-log_(2)(9^(x)-6)=1 .

Solve : log_(2)(4-x)=4-log_(2)(-2-x)

Solve for x:(log)_(4)(x^(2)-1)-(log)_(4)(x-1)^(2)=(log)_(4)sqrt((4-x)^(2))

Solve log_(2)(3x-2)=log_((1)/(2))x

Solve the equation log_(4)(2x^(2)+x+1)-log_(2)(2x-1)=1

Solve for x:log_(2)(4(4^(x)+1))*log_(2)(4^(x)+1)=log_((1)/(sqrt(3)))(1)/(sqrt(8))