Home
Class 11
MATHS
The function f(x)=min{x-[x],-x-|-x|} is...

The function `f(x)=min{x-[x],-x-|-x|}` is a

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=min{x-[x],-x-[-x]} is a

The number of the points where the function f(x)=min_({|x|-1,|x-2|)|-1} is NOT derivable,is

The function f(x)=min[|x|-1,|x-2|-1,|x-1|-1] is not differentiable at

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-4|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-4|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

The area of int_(-10)^(10) f(x) dx , where f(x) = min {x -[x] , -x-[-x]} , is

The number of non differentiability of point of function f (x) = min ([x] , {x}, |x - (3)/(2)|) for x in (0,2), where [.] and {.} denote greatest integer function and fractional part function respectively.

The number of non differentiability of point of function f (x) = min ([x] , {x}, |x - (3)/(2)|) for x in (0,2), where [.] and {.} denote greatest integer function and fractional part function respectively.