Home
Class 11
MATHS
If a ,b ,c in R^+, t h e n(b c)/(b+c)+(...

If `a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b)` is always (a)`lt=1/2(a+b+c)` (b)`geq1/3sqrt(a b c)` (c)`lt=1/3(a+b+c)` (d)`geq1/2sqrt(a b c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c in R^(+), then (bc)/(b+c)+(ac)/(a+c)+(ab)/(a+b) is always (a) (a) =(1)/(3)sqrt(abc)(c) =(1)/(2)sqrt(abc)

If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always (a)geq12 (b)geq9 (c)lt=12 (d)none of these

If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always (a) geq12 (b) geq9 (c) lt=12 (d)none of these

If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always (a) geq12 (b) geq9 (c) lt=12 (d)none of these

If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always (a) geq12 (b) geq9 (c) lt=12 (d)none of these

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

If a ,\ b ,\ c are positive real numbers, then sqrt(a^(-1)b)\ xx\ sqrt(b^(-1)\ c)\ xx\ sqrt(c^(-1)a) is equal to: (a)\ 1 (b) a b c (c) sqrt(a b c) (d) 1/(a b c)

If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq3//2.

If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq3//2.

If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq3//2.