Home
Class 12
MATHS
Given that f'(x)=prod(n=1)^(101)(n-x)^n ...

Given that `f'(x)=prod_(n=1)^(101)(n-x)^n` . Number of relative maximum of f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=prod_(r=1)^(5)(x+r), then f'(-5) is

If f(n)=prod_(r=1)^(n)cos r,n in N , then

If f(n)=prod_(r=1)^(n)cos r,n in N , then

Given the function f(x)=1/(1-x) , the numbers of discontinuities of f^(3n) = f o f … of ("3n times") is

If f(x)=prod_(n=1)^(100)(x-n)^(n(101-n) then find (f(101))/(f '(101))

If f(x)=prod_(n=1)^(100)(x-n)^(n(101-n)) ; then (f(101))/(f'(101))=

If f(x)=prod_(n=1)^(100)(x-n)^(n(101-n)) ; then (f(101))/(f'(101))=

If f(x)=prod_(n=1)^(100)(x-n)^(n(101-n)) ; then (f(101))/(f'(101))=

Let f(x)=(x-1)^(4)(x-2)^(n),n in N. Then f(x) has maximum at x=1 if n is odd a maximum at x=1 if n is even a minimum at x=1 if n is even a minima at x=2 if n is even

Let f(x) = (x - 1)^(4) (x - 2)^(n), n in N . Then f(x) has a)a maximum at x = 1 if n is odd. b)a maximum at x = 1 if n is even c)a minimum at x = 1 if n is even d)a minima at x = 2 if n is even