Home
Class 12
MATHS
Solution of the differential equation co...

Solution of the differential equation `cosx dy= y(sinx -y)dx , 0 lt x lt pi/2` (A) `secx=(tanx+c)y` (B) `ysecx=tanx+c` (C) `ytanx=secx+c` (D) `tanx=(secx+c)y`

Text Solution

AI Generated Solution

To solve the differential equation \( \cos x \, dy = y(\sin x - y) \, dx \) for \( 0 < x < \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ \cos x \, dy = y(\sin x - y) \, dx \] Dividing both sides by \( \cos x \) and \( y \): ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|8 Videos
  • ELLIPSE

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|8 Videos

Similar Questions

Explore conceptually related problems

Solution of the differential equation cosxdy=y(sinx-y)dx, 0 lt x lt pi/2 is (A) tanx=(secx+c)y (B) secx=(tanx+c)y (C) ysecx=tanx+c (D) ytanx=secx+c

The solution of the differential equation (dy)/(dx)=secx-ytanx is :

Find the differentiation of y=tan^(-1)(secx+tanx)

Solve the following differential equations : (dy)/(dx)+sec x.y=tanx(0 le x lt pi/2) .

Differentiate y=tanx

Solve the following differential equation: (dy)/(dx)+secx*y=tanx(0lexltpi/2)

Solve the following differential equations y sec^(2)x dx+(y+7)tanx dy=0

Solve the following differential equations (dy)/(dx)=secx(2secx+tanx)