Home
Class 12
MATHS
" Show that "int(0)^( pi/2)(sin^(2)x)/(s...

" Show that "int_(0)^( pi/2)(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))log(sqrt(2)+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(cos^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))(log(sqrt(2)+1))

Prove that int_(0)^((pi)/(2))(sin^(2)x)/(1+sin x cos x)dx=(pi)/(3sqrt(3))

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

int_(0)^( pi//2)sqrt((1-sin2x)/(1+sin2x))dx

Prove that int_(0)^(pi//2)(cos^(2) x sin x)/(sqrt(1+cos^(2)x))dx = (sqrt(2) - log(sqrt(2) + 1))/2

int_(0)^(pi//4)sqrt((1-sin2x)/(1+sin 2x))dx=

int_(0)^( pi/2)sqrt(1-sin x)dx

Prove that int_0^(pi/2) \ sin^2 x / (1+sin x cos x) \ dx = pi/(3 sqrt(3)