Home
Class 11
MATHS
sum(r=0)^(n)2^(r+2)(c(0))/((r+1)(r+2))=?...

sum_(r=0)^(n)2^(r+2)(c_(0))/((r+1)(r+2))=?

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n)(-2)^(r)*(nC_(r))/((r+2)C_(r)) is equal to

Value of sum_(r=0)^(2n)r*(""^(2n)C_(r))*(1)/((r+2)) is equal to :

Let for n in N, f(n)=sum_(r=0)^(n)(-1)^(r)(C_(r)2^(r+1))/((r+1)(r+2))

Deduce that: sum_(r=0)^(n)*^(n)C_(r)(-1)^(n)(1)/((r+1)(r+2))=(1)/(n+2)

sum_(r=0)^(n)((n-3r+1)^(n)C_(r))/((n-r+1)2^(r)) is equal to

sum_(r=0)^n((-1)^r*C_r)/((r+1)(r+2)(r+3))=1/(a(n+b)), then a+b is

Ifn>2than sum_(r=0)^(n)(-1)^(r)(n-r)(n-r+1)C_(r)=(A)0(B)n(C)2^(n)(D)(n-1)2^(n)