Home
Class 12
MATHS
-p(1+2x+4x^(2)+8x^(3)+16x^(4)+32x^(5))=1...

-p(1+2x+4x^(2)+8x^(3)+16x^(4)+32x^(5))=1-p^(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-y)(1+2x+4x^(2)+8x^(3)+16x^(4)+32x^(5))=(1-y^(6)) then (y)/(x)=

If (1 - y) (1 + 2x + 4x^(2) + 8x^(3) + 16x^(4) + 32x^(5) ) = 1 -y^(6), (y ne 1) , then a value of y/x is

If (1-p)(1+3x+9x^(2) +27x^(3)+81x^(4)+243x^(5)) = 1-p^(6) p ne 1 then the value of (p)/(x) is

If (1-p) (1+3x + 9x^(2) + 27x^(3) + 81 x^(4) + 243 x^(5)) = (1-p^(6)) (p != 1) , then the value of (p)/(x) will be -

The equation whose roots are 0 , 0, 2, 2, -2, -2 is A) x^(6)+8x^(4)-16x^(2)=0 B) x^(6)-4x^(4)-16x^(2)=0 C) x^(6)-8x^(4)+16x^(2)=0 D) x^(6)+4x^(4)+16x^(2)=0

The HCF of 8x^(4) - 16x^(3) - 40x^(2) + 48x and 16x^(5) + 64x^(4) + 80x^(3) + 32x^(2) is

Find the quotient and remainder on dividing p(x) by g(x) p(x)= 4x^(3)+8x^(2)+8x+7, g(x)= 2x^(2)-x+1

Check whether g(x) is a factor of p(x) by dividing the first polynomial by the second polynomial: (i) p(x) = 4x^(3) + 8x + 8x^(2) +7, g(x) =2x^(2) -x+1 , (ii) p(x) =x^(4) - 5x -2, g(x) =2-x^(2) , (iii) p(x) = 13x^(3) -19x^(2) + 12x +14, g(x) =2-2x +x^(2)