Home
Class 12
MATHS
int1^(e^2) (dx)/(x(1+logx)^2)=...

`int_1^(e^2) (dx)/(x(1+logx)^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(e)(dx)/(x(1+logx))

int_(1)^(e)(dx)/(x(1+logx)^(2))

The value of int_(1)^(e)(dx)/(6x(logx)^(2)+7x(logx)+2x)=

int dx/(x(1+logx)^(2) =

Evaluate int_(1)^(2)(1)/(x(1+logx)^(2))dx .

Evaluate int_(1)^(e)(1)/(x(1+logx))dx

Evaluate int_1^2 1/(x(1+logx)^2)dx

Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

Evaluate : int_e^(e^2){1/(logx)-1/((logx)^2)}dx

int_(1//e)^(e)(dx)/(x(logx)^(1//3))