Home
Class 9
MATHS
When x^3-2x^2+a x-b is divided by x^2-2x...

When `x^3-2x^2+a x-b` is divided by `x^2-2x-3,` the remainder is `x-6.` The values of `a\ a n d\ b` are respectively. (a)`-2,\ -6` (b) `2\ a n d-6` (c)`-2\ a n d\ 6` (d) `2\ a n d\ 6`

Promotional Banner

Similar Questions

Explore conceptually related problems

When x^3-2x^2+a x-b is divided by x^2-2x-3, the remainder is x-6. The values of a\ a n d\ b are respectively. (a) -2, -6 (b) 2,-6 (c) -2, 6 (d) 2 , 6

When x^(3)-2x^(2)+ax-b is divided by x^(2)-2x-3, the remainder is x-6. The values of a and b are respectively.-2,quad -6 (b) 2 and -6-2 and 6 (d) 2and 6

When n is divided by 4, the remainder is 3. What is the remainder when 2n is divided by 4? 1 (b) 2 (c) 3 (d) 6

Find the values of a\ a n d\ b so that (x+1)a n d\ (x-1) are factors of x^4+a x^3-3x^2+2x+b

Multiply: -6a^2b c ,2a^2b\ a n d-1/4 (ii) 4/9a^5b^2,\ 10 a^3b\ a n d\ 6

Let f,\ g\ a n d\ h be real-valued functions defined on the interval [0,\ 1] by f(x)=e^x^2+e^-x^2,\ g(x)=x e^x^2+e^-x^2\ a n d\ h(x)=x^2e^x^2+e^-x^2 . If a , b ,\ a n d\ c denote respectively, the absolute maximum of f,\ g\ a n d\ h on [0,\ 1], then a=b\ a n d\ c!=b (b) a=c\ a n d\ a!=b a!=b\ a n d\ c!=b (d) a=b=c

If in the expansion f (1+x)^m(1-x)^n, the coefficient of x and x^2 are 3 and -6 respectively then (A) m=9 (B) n=12 (C) m=12 (D) n=9

(-2)x\ (-3)x\ 6\ x\ (-1) is equal to (a)36 (b) -36 (c) 6 (d) -6

If the rational numbers (-2)/3\ a n d4/x represent a pair of equivalent rational numbers, then x= (a) 6 (b) -6 (c) 3 (d) -3

If 4x^2+y^2=40\ a n d\ x y=6,\ find the value of 2x+ydot