Home
Class 12
MATHS
" ret "f(u)=(x[x])/(x^(2)+1):(1,3)rarr R...

" ret "f(u)=(x[x])/(x^(2)+1):(1,3)rarr R" then range "q

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

f:R rarr R , f(x)=(3x^(2)+mx+n)/(x^(2)+1) .If the range of this function is [-4,3) , then find the value of m^(2)+n^(2) .

Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1) . If the range of this function is [-4,3], then the value of (m^(2)+n^(2))/(4) is ….

Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1) . If the range of this function is [-4,3] , then the value of (m^(2)+n^(2))/(4) is ….

Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1) . If the range of this function is [-4,3], then the value of (m^(2)+n^(2))/(4) is ….

Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1) . If the range of this function is [-4,3] , then the value of (m^(2)+n^(2))/(4) is ….

Let f:(1,3)rarr R be a function defined by f(x)=(x[x])/(1+x^(2)) , where [x] denotes the greatest integer <=x .Then the range of f is

f(x) = cot^(-1)x: R^(+) rarr (0,pi) and g(x) = 2x-x^(2): R rarrR then the range of f(g(x)) is ...........