Home
Class 12
MATHS
" 2.Prove that "tan^(-1)((6x-8x^(3))/(1-...

" 2.Prove that "tan^(-1)((6x-8x^(3))/(1-12x^(2)))-tan^(-1)((4x)/(1-4x^(2)))=tan^(-1)2x;|2x|<(1)/(sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((6x-8x^(3))/(1-12x^(2)))-tan^(-1)((4x)/(1-4x^(2)))=tan^(-1)2x;|2x|<(1)/(sqrt(3))

Prove that tan^(-1)((6x-8x^(3))/(1-12x^(2)))-tan^(-1)((4x)/(1-4x^(2)))= tan^(-1)2x,|2x| lt (1)/(sqrt(3)) .

Prove that : tan^-1((6x-8x^3)/(1-12x^2))- tan^-1(4x/(1-4x^2)) = tan^-1 2x,|2x| < 1/sqrt3

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt(1)/(sqrt(3))

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).