Home
Class 12
MATHS
If the sum of n terms of the series Sn=c...

If the sum of n terms of the series `S_n=cosec^-1sqrt10+cosec^-1sqrt50+cosec^-1sqrt170+...........+cosec^-1sqrt((n^2+1)(n^2+2n+2).` The value of `[lim_(x->oo)s_n]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum cosec^(-1)sqrt(10)+cosec^(-1)sqrt(50)+cosec^(-1)sqrt(170)++cosec^(-1)sqrt((n^2+1)(n^2+2n+2))

cosec"^(-1)(-sqrt(2))

cosec"^(-1)(-sqrt(2))

Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))

Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))

Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))

Find the sum csc^(-1)sqrt(10)+csc^(-1)sqrt(50)+csc^(-1)sqrt(170)+...+csc^(-1)sqrt((n^(2)+1)(n^(2)+2n+2))

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a