Home
Class 12
MATHS
" (66) If "y=(x-1)log(x-1)-(x+1)log(x+1)...

" (66) If "y=(x-1)log(x-1)-(x+1)log(x+1)" ,prove that "(dy)/(dx)=log((x-1)/(1+x))

Promotional Banner

Similar Questions

Explore conceptually related problems

If =(x-1)log(x-1)-(x+1)log(x+1) prove that (dy)/(dx)=log((x-1)/(1+x))

If 'y=(x-1)log(x-1)-(x+1)log(x+1),p rov et h a t(dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove : (dy)/(dx)=log((x-1)/(1+x))

if y=log x^(x) prove that (dy)/(dx)=1+log x

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y=log[(x-1)^(x-1)]-log[(x+1)^(x+1)]," then: "(dy)/(dx)=