Home
Class 12
MATHS
Let f(x) be a cubic polynomial on R whic...

Let `f(x)` be a cubic polynomial on R which increases in the interval `(-oo,0)uu(1,oo)` and decreases in the interval `(0, 1)`. If `f'(2)=6` and `f(2)=2` , then the value of `tan^(-1)(f(1))+tan^(-1)(f(3/2))+tan^(-1)(f(0))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Find a polynomial f(x) of degree 4 which increases in the intervals (-oo,1) and (2,3) and decreases in the intervals (1,2) and (3,oo) and satisfies the condition f(0)=1

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (oo,1) and (2, 3). If f(1) = -8, then the value of f(2) is

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (oo,1) and (2, 3). If f(1) = -8, then the value of f(2) is

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (oo,1) and (2, 3). If f(1) = -8, then the value of f(2) is

Show that f(x)=1/(1+x^2) decreases in the interval [0,oo) and increases in the interval (-oo,0]dot

Show that f(x)=1/(1+x^2) decreases in the interval [0,\ oo) and increases in the interval (-oo,\ 0] .

Show that f(x)=(1)/(1+x^(2)) decreases in the interval [0,oo) and increases in the interval (-oo,0].

Show that f(x)=(1)/(1+x^(2)) decreases in the interval [0,oo) and increases in the interval (-oo,0].